Invasion by extremes: population spread with variation in dispersal and reproduction.

نویسندگان

  • J S Clark
  • M Lewis
  • L Horvath
چکیده

For populations having dispersal described by fat-tailed kernels (kernels with tails that are not exponentially bounded), asymptotic population spread rates cannot be estimated by traditional models because these models predict continually accelerating (asymptotically infinite) invasion. The impossible predictions come from the fact that the fat-tailed kernels fitted to dispersal data have a quality (nondiscrete individuals and, thus, no moment-generating function) that never applies to data. Real organisms produce finite (and random) numbers of offspring; thus, an empirical moment-generating function can always be determined. Using an alternative method to estimate spread rates in terms of extreme dispersal events, we show that finite estimates can be derived for fat-tailed kernels, and we demonstrate how variable reproduction modifies these rates. Whereas the traditional models define spread rate as the speed of an advancing front describing the expected density of individuals, our alternative definition for spread rate is the expected velocity for the location of the furthest-forward individual in the population. The asymptotic wave speed for a constant net reproductive rate R0 is approximated as (1/T)(piuR)/2)(1/2) m yr(-1), where T is generation time, and u is a distance parameter (m2) of Clark et al.'s 2Dt model having shape parameter p = 1. From fitted dispersal kernels with fat tails and infinite variance, we derive finite rates of spread and a simple method for numerical estimation. Fitted kernels, with infinite variance, yield distributions of rates of spread that are asymptotically normal and, thus, have finite moments. Variable reproduction can profoundly affect rates of spread. By incorporating the variance in reproduction that results from variable life span, we estimate much lower rates than predicted by the standard approach, which assumes a constant net reproductive rate. Using basic life-history data for trees, we show these estimated rates to be lower than expected from previous analytical models and as interpreted from paleorecords of forest spread at the end of the Pleistocene. Our results suggest reexamination of past rates of spread and the potential for future response to climate change.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The genetic signature of rapid range expansions: How dispersal, growth and invasion speed impact heterozygosity and allele surfing.

As researchers collect spatiotemporal population and genetic data in tandem, models that connect demography and dispersal to genetics are increasingly relevant. The dominant spatiotemporal model of invasion genetics is the stepping-stone model which represents a gradual range expansion in which individuals jump to uncolonized locations one step at a time. However, many range expansions occur qu...

متن کامل

Stochastic dispersal increases the rate of upstream spread: A case study with green crabs on the northwest Atlantic coast

Dispersal heterogeneity is an important process that can compensate for downstream advection, enabling aquatic organisms to persist or spread upstream. Our main focus was the effect of year-to-year variation in larval dispersal on invasion spread rate. We used the green crab, Carcinus maenas, as a case study. This species was first introduced over 200 years ago to the east coast of North Americ...

متن کامل

Temporally variable dispersal and demography can accelerate the spread of invading species.

We analyze how temporal variability in local demography and dispersal combine to affect the rate of spread of an invading species. Our model combines state-structured local demography (specified by an integral or matrix projection model) with general dispersal distributions that may depend on the state of the individual or its parent. It allows very general patterns of stationary temporal varia...

متن کامل

Relating dispersal and range expansion of California sea otters.

Linking dispersal and range expansion of invasive species has long challenged theoretical and quantitative ecologists. Subtle differences in dispersal can yield large differences in geographic spread, with speeds ranging from constant to rapidly increasing. We developed a stage-structured integrodifference equation (IDE) model of the California sea otter range expansion that occurred between 19...

متن کامل

Patterns of spread in biological invasions dominated by long-distance jump dispersal: Insights from Argentine ants.

Invading organisms may spread through local movements (giving rise to a diffusion-like process) and by long-distance jumps, which are often human-mediated. The local spread of invading organisms has been fit with varying success to models that couple local population growth with diffusive spread, but to date no quantitative estimates exist for the relative importance of local dispersal relative...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The American naturalist

دوره 157 5  شماره 

صفحات  -

تاریخ انتشار 2001